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Abstract. Connections between thePoincaé covariant spacé& of differential 1-forms on
x-Minkowski space, Dirac operator and Alain Connes formula are studied. The equations and
Lagrangian of gauge theory are constructed. The appearance of an additional spin-0 gauge field
according to the non-trivial structure 6f is studied.

0. Introduction

Recently, non-commutative geometry [1] has attracted a great deal of interest from many
researchers as a natural framework for quantization of space and time. One of the most
promising results in this direction is the approach to gauge field theory developed in [2]
where the standard model of gauge interaction was obtained from non-commutativity of
spacetime. A review of different deformations of Minkowski space which are connected
with the corresponding deformations of Lorentz and Poiagapups is given in the review
[12].

The basic notion of the approach studied in [1, 2] is the Connes ttiflé{( D), where
A is in the general framework a non-commutatitalgebra which is considered as an
algebra of operators in the Hilbert spate D is a linear, possibly unbounded, operator in
‘H with D* = —D.

In the classical case wheA = Fun(M) is a commutative algebra of functions on the
differential manifoldM and the operatoD is the usual Dirac operator

D=y'y,. (0.1)
In (0.1) 9; are local derivatives and for eache M matricesy’(x) satisfying relations
Y @y () + v 0y () = 287 (x) (0.2)

are generators of a local Clifford algebi@(x). In equation (0.2)g"(x) are local
components of the metric tensor.

The vector bundle oveM whose fibre over each point e M is an algebraCl(x) is
called the Clifford bundle oveM [4]. This bundle was associated in [1, 2] with the space
of all quantum differential forms ove¥/; however, the space of all 1-forms is a subbundle
in CI(M), whose fibre over each pointe M is generated as a linear space by elements
y'(x). We shall call it the Dirac bundle and denote it by @i, D).
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Non-commutative differential calculus on the Ff)is defined by introduction of the
exterior derivative operator which we shall denote Ry Bor eachf € Fun(M) it has the
form

def =D, fl. (0.3)
According to (0.1), formula (0.3) gives the following result:

def = % (N)y'. (0.4)
Correspondence of the definition (0.3) with the usual external derivative

df = 0:(f) dx’ (0.5)

follows from the isomorphism betwedri (M) and DifM, D) or in an algebraic framework
between their spaces of sectidnand Dir(FuniM), D), wherel is the space of differential
1-forms overM or the space of sections of the cotangent bufidlgV?) and Dir(FuriM), D)

is the space of sections of DM, D). The isomorphism follows from the fact that all fibres
of T*(M) and DiKM, D), as well as the corresponding gluing maps, are isomorphic. This
isomorphism may be expressed by the following commutative diagram:

Fun(M) df=0;(f) dx’ r
Jid ldxt =y (0.6)
def=[D, f] .
Fun(M) — Dir(Fun(M), D)

As a bimodule over Fu@/), Dir(Fun(M), D) is generated by all sums of the form
> £ID. gl (0.7)

According to the isomorphism (0.6) the gauge connection 1-fafmx’, which is used
in construction of the pure gauge action, and the gauge interactionAgrmin the Dirac
equation for the spinor field have similar geometrical interpretations. Therefore, when
studying the deformations of field theory in quantum spaces, it is natural to suppose that
the diagram (0.6) also has an analogue in the non-commutative case. We shall write the
corresponding diagram in the form,

A= r
Vid Ldf = dof (0.8)
A 8T pirca, p)

where Dil(A, D) is a bimodule overd generated by all sums of the form (0.7).

By its meaning the diagram (0.8) is much richer than the rather tautological diagram
(0.6) because in quantum cases elements af well as elements of Qid, D) have non-
trivial commutation relations with elements gf, so that the dependence of Dit, D) on
D becomes more essential.

When the Dirac operator is defined, formula (0.3) gives an explicit construction for
the external differential d However, for the most interesting class of non-commutative
spaces which appears in applications of quantum group theory [14], the non-commutative
differential calculus may be defined in the purely abstract form [3]. So in this case
the commutativity of the diagram (0.8) means an equivalence of the two approaches for
construction of the non-commutative differential calculus according to [1] or [3]. In the
paper we show that this commutativity may be used as a powerful tool for constructing the
corresponding Dirac operator.
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In the framework of [1, 2], the Dirac equation for a massless spinor field coupled with
the gauge potential has the form

(D+ V)Y =0 (0.9)

wherey € H andV is a non-commutative analogue @f4;y’ whereg is a gauge charge.
According to the isomorphism between the quantum Dirac and the quantum cotangent
bundles supposed by (0.8), it corresponds to the gauge connection quantum &sform
which is the non-commutative analogue gfidx’.

We take the gauge transformation law for spinorial fields in the form

v —> Uy (0.10)
whereU is a unitary element oA
UU* =U"U = 1. (0.11)

(An additional restriction ortU will be discussed in section 3). The transformation (0.10)
for ¢ is compatible with the following transformation féf

V - UVU*+U[D, U*] (0.12)
which, according to (0.8), is equivalent to the following law tor
w—> &=UnU"+UdU". (0.13)

In the present paper we consider the Dirac operator fok tiinkowski spaceM, as
one of the most studied deformations of the usual Minkowski space [5-8]MQmay be
defined the right or left coaction of the quantum PoiécgroupP,. The left P, -covariant
differential calculus onM, was defined in [6]. The Dirac operator oW, was proposed
in [11]. In this paper we (using left analogues of [6—8] constructions) defingnDirac
operator which has a more general form than that defined in [11], but in some special case it
coincides with the latter. In contrast with the approach used in [11], we construct the Dirac
operator according to the condition of commutativity of the diagram (0.8). Our construction
has a general form and may be also used for different quantum spaces admitting the quantum
group coaction. A right (or left) covariant differential calculus on these spaces can be
constructed according to [3]. As will be mentioned in the conclusions, the commutativity
of diagram (0.8) follows from the general formulae of quantum differential calculus.

A description of different Minkowski space deformations has been given in the review
in [12]. (Examples of Dirac operators on the quant8ith(2) group and the quantum sphere
have been discussed in [9] and [13].)

The paper is organized as follows. In section 1 we study according to [6-8] the
differential geometry onM,. According to [15], the algebra of differential operators on
M, is defined as the unified algebra consisting of both the elementd,ofand its Hopf
dual M}, with commutation relations between them induced by the left-invariant action of
M on M,.

It is shown that on this algebra a riglt coaction may be defined. The corresponding
generators on which it has the simplest form are presented. The invariant Klein—Gordon
operator onM, is constructed as a bilinear combination of these generators.

Construction of the exterior differential needs the introduction of quantum derivatives
which are also elements of the quantum Poiacalgebra. In section 2, according to
diagram (0.8), we construct an, Dirac operator. In section 3 we derive in various
forms the equations of deformed electrodynamicsMdp. We also define the deformed
Lagrangian. However, in the non-commutative case there is no such correspondence
between the Lagrangian and the equations of motion. Moreover, the gauge invariance
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group of these equations is much larger than the corresponding group for the Lagrangian.

We also mention that the existence of an additional dimension of the space of the quantum

differential 1-forms leads to the natural appearance of the extra spin-0 gauge field.
Everywhere in this paper we use the Einstein rules of summation. In the first section,

according to the notation used in [8], we suppose that the greek indigesy numerate

the spacetime components and take the values 0,1, 2, 3; however, the latin indéces

n numerate only the space components and take values 1, 2, 3. Throughoateans the

Minkowski space metric tensor (31, —1, —1).

1. k-Poincaré group and «-Minkowski space

The «k-Poincaé quantum groufP, was introduced in [7] (see also [6, 8]) and in one of the
equivalent forms it represents as'&lopf algebra generated by Hermitian elements’,
a* and relations

i
[a",a"] = —(8fa” — syat)
K

(A" AP = 0

(A, a%] = -

no - ;[(85 - AOU)Ap_a + gUOt(Sg - A/LO)]

AN =N QA

A@)y=a" @A +1Q®a"

S(AMU) = AVM = guagVﬂAﬁ"‘

S(a") = —a" A",

E(AMV) = 8/‘1

@) =0. (1.2)
The P, may be regarded as the quantum symmetry group ok thMinkowski space

M., which is defined by four Hermitian generator’$s and the relations

[x*, x"] = I—((ng” — 8ox™). 1.2)
K
The corresponding righP, coaction is
Pr(xM) =x"QA M +1Qa" (1.3)
(the left comodule structure can also be defined [6, 7).
The coproduct, counit, and antipode [8]
A" =1x"+x*®1
ex"y=0
Sx#) = —x# (1.4)
also define onM, the structure of the cocommutative Hopf algebra. As was shown in [8],
the correspondencg* — x* and A* , — § defines a Hopf algebra homomorphism from
P, to M,.
Its Hopf dual M is defined by four Hermitian generatof; and the relations
[P, P]=0
A(P) =P®1+1® P
AP =P, @1+e P o P,
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S(Po) = —Fo

S(Py) = —€"/* P,

e(P,) =0. (1.5)
The pairing(-, -) : M ® M, — C is given by

i(Py,x") =6, (1.6)

As was shown in [8], the algebrat? is a Hopf subalgebra of the quantum Poirgcar
algebra which is dual t@,. The corresponding pairing betwegdt* and P, is given by
the formula

i(Py.a") =8 1.7)
According to this pairing M? acts onM, from the left
7(x) = (i[d @), Pr(x)) TeM, xeM,. (1.8)

Considering the elements o1, as the left multiplication operators we may obtain,
according to (1.5), the following relations:

1
[Po, x"] = 786‘
i
[Pms xO] = —Py
K

1
[P, x"] = Tsfn. (1.9
The elements

. Py 1
4 Po/k D2
=1 ch— — —e'v“Pp
¢ K( Kk 22 )

P 1
0 =ik [ sh=2 + el p2
Kk 22
" = —iefvp, (1.10)

satisfy the following commutation relations with the elements\af,
[
[, x"] = —(g%e" — g"e® — g"e")
K
i
[e* xH] = ——eH (1.12)
K
and the additional relation

O =epe” = g'epe, = K2+ (e%2. (1.12)

Equations (1.11) and (1.12) are invariant under the rfightoaction which onM, has
the form (1.3) and on the elements (1.10) is defined by

Drley) =€, @ A", dr(eh) =e*® L (1.13)

The proof of this statement can be easily obtained by comparing equations (1.11) and
(1.13) with analogous formulae (1.15) and (1.17) taken from [6] and given below. These
formulae correspond to the space of differential 1-forms but have the same form as (1.11)
and (1.13). The invariance of (1.12) under (1.13) may be proved easily by direct calculation.

We may also interpret formulae (1.13) together with (1.3) as a naRyaloaction on
the algebra of differential operators.
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So, according to the general approach [10,15] we may consider the joint algebra
generated by#, e,, ¢* and relations (1.2), (1.11) and (1.12) as the algebra of differential
operators onM,.

Elementd, from (1.12) is invariant under (1.13) and we may consider it as a massless
Klein—Gordon operator oM. (It can be expressed from the Klein—Gordon operd&tor
suggested in [11] by the relatidfi, = C1(1 + (1/4«?)C1).)

Following [6] we define the quantum De Rham complex .oy, (the Leibniz rule
is satisfied). As aM, bimodule the space of 1-formE is generated byr* = dx*.

The commutation relations between the element$ afnd M, may be written using an
additional 1-form [6]:

i 3
4= %[t“, xu] — Z‘CO. (1.14)

These relations have the form [6]

i i
[t#, x"] = —(g%1" — g0 — gV [t% xH] = ——1H. (1.15)

K K
The external algebra relations and the external derivative are given py=(0, ..., 4)
AT =—1/ AT dri = 0. (1.16)

Equations (1.14)—(1.16) are invariant under the rigptcoaction given on the elements
of M, by (1.3) and on the elements by

Dr(t") =" @AM Pr(th =" 1L (1.17)
(In [6] the left variant of (1.17) was presented.)

It is easy to see from (1.15) that for evarye M,

s2a = as® °a = at® (1.18)

where the metric form? e I' ® ' and the volume form® e I'"® are defined by

=, " -t*er! P ="At AP A ATA (1.19)

These forms are invariant under the right coaction onl’ ® I and I'"°.
According to (1.12) and (1.18), we suggest the following components of the metric

tensor
g =gmu=-1 (1.20)

corresponding to the* and .
The commutation relations between the 1-forms and element$1pfmay also be
represented in the standard form [3] (=0, 1, 2, 3, 4)

t'a = f';(a)t’ (1.21)
where f?, are linear operatorg’, : M, — M,. Fromzi(ab) = (t'a)b it follows that
fiilab) = f' (@) f(b). (1.22)

In the most interesting case when ﬁﬂj € M, so that their action on elements 04, is
given by (1.8), this is equivalent to

Af ) =f® f. (1.23)
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Taking
Py 1
0 __ Po/k P2
=ch— + —e'v“P
o K + 22
1 1
fom:__Pm mOZ__ PO/KP’" fnmza:;lz
K K
P 1
f04= h—0+ gho/x p2
K 2
f4 =Sh&— PD/KPZ
0 K K
m 1 Po/x 4
f ——ev"Pp, f m — -P,
K
Py 1
4 Po/k D2
=ch— — —e'Y“P 1.24
a K 22 (1.24)

we can directly prove the commutation relations (1.15) and the coaction formulae (1.23).
From (1.15) and (1.17) it follows that the correspondencel’? — I'"3 defined by
the formulae

*‘L’4/\‘[0=‘[1/\‘[2/\1’3

st ATt =1OA 2 A8

*sOAT =14 A2 A LS

*sti A2 = P A O A (1.25)
and their cyclic permutations is*ahomomorphism. It agrees with the righf,-comodule
and M, bimodule structures on”? andI'*3. We shall need this homomorphism in section 3
to construct the equations and Lagrangian of gauge theory.

From the definition ofr® (1.19) and the commutation relations (1.15) it follows that for

everya e '?

QA XU = %0 A Q. (1.26)

We shall use this property in the definition of the gauge invariant Lagrangian (3.17).

2. Dirac operator and differential calculus

Let us now define the following elements 6f*:
do = ik f4 O = ik f* 3 = ik (f4 —1). (2.1)

Using these elements we may write the formula for the external derivation in the compact
form (1 =0,1,2,3,4)

da = 9;(a)T'. (2.2)
According to the Leibniz rule

d(ab) = adb +dab (2.3)
the following system of relations must be satisfiedj(= 0, 1, 2, 3, 4):

8;(ab) = ad; (b) + ;(a) £, (b) (2.4)

or
[8;, a] = 8;(a) 7. (2.5)
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Since allo; € M this is equivalent to
AB)=1®8 + 8 ® f/;. (2.6)

So to prove (2.2) we must check it for the coordinatésand then prove (2.6), which can
be done easily by strict calculations.
We take the Dirac operator in the form=£0, ..., 4)

DK = ]/iai (27)
wherey?, fori = 0,..., 3, are the usual Dirac gamma matrices satisfying the standard
relation

yiyl +yiyl = 241 (2.8)

(which is a standard Minkowski space metric) aplis some undefinite matrix which,
however, may be taken in the form = A1, wherel, is a unit 4x 4 matrix ory; = Ays
whereys = iygy1y2y3. The choiceys = 0 corresponds to the Dirac operator suggested in
[11].

In this case, the connection betwebp andJ, has the standard form

D?=0,. (2.9)

How to define the Hilbert spacK correctly, where the operatd, acts, is a problem.
According to the general approach [1, 2] it should be of the f@fm® M, %, where the
Hilbert space M is a Hilbert completion of an appropriate subalgebratify. This
statement follows from the commutative limit— oo whereH = C* @ L2(M%).

The direct application of (0.3) gives, according to (2.5), the following expressions for
i corresponding to the’ elements ofDir(M,, D,)

Té — )/jfij- (2.10)

According to (1.22), relations (1.21) are also fulfilled fef and the diagram (0.8) is
commutative. As we see this fact does not depend on the explicit forpf qas well

as on the othel-matrices). Generally, it expresses the statement that on the definition
(2.7) derivativesd; must be chosen in accordance with the commutativity diagram (0.8);
however, algebraical properties pfmatrices lead to connection between the Dirac and
Klein—Gordon operators. We shall discuss an additional rolg“ah the next section.

3. Gauge theory onM,

In this section we suppose that all up and down indices take values from O to 4.

By analogy with the classical case we define the gauge potentials as elemsaitts thfe
guantum algebra of functions. Let us introduce thel) gauge field by the anti-Hermitean
gauge connection 1-form

w =iAT (.1

whereA,, k =0, ..., 3, are deformations of the usual potential atylmay be interpreted
as a spin-0 gauge field. The appearance of such scalar gauge fields in the framework of
non-commutative geometry has been intensively studied in [1] and [2].

The condition thatv must be anti-Hermitean is equivalent to

f1i(AD) = A;. (3.2)

It seems important that equation (3.2) mix¢s and A,.
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According to (0.9) and (2.7) and connection betwaeand V', we can write the gauge
coupled Dirac equation for a massless particle in the form

yEvey =0 (3.3)
where
Vi = 0 +igA; (3.4)

(g is a gauge charge).
The transformation law (0.13) gives

Av=UA; f/ (U*) —i/gUd(U"). (3.5)
Defining the anti-Hermitean curvature form
Q=dv+gwAw (3.6)
we obtain, according to (0.13), the following transformation law:
Q=UQU". (3.7)
Defining the field strength tensor by
iFirt! A h=Q (3.8)
or according to (1.16)
Fyj = 0;(Aj) — 9;(A) + 1AL (A)) — fkj(Ai)] (3.9)
we can use relations (3.7), (1.21) and (1.22) to obtain the following transformation law:
Fj =UFuf " f';@W". (3.10)
We may also obtain the tenséf; by commuting covariant derivatives
[Vi. vl =igFu f": 1"} (3.11)
It is easy to prove that the following Bianchi identities
(Vi [vj, Vil + [k, [V, vill + [V, [Ve, vi]l =0 (3.12)

are satisfied.
Defining the deformed covariant derivatives of the strength tensor as

Vi F"™ = 0, F™ - ig(Aj 7, (F™) = F™ £, £, *(A)) (3.13)
it is easy to obtain the following transformation law:
TnF"™ = U v, F™ f,*(U"). (3.14)

In the limit « — oo, it follows from (1.24) (or generally from (1.21)) that we
have f” — & so that the transformation laws (3.10) and (3.14) may be considered as
deformations of the standard formulae. Equations (3.12) and

VmF™ =0 (3.15)

may be interpreted &B,-covariant equations of deformed electrodynamicg-iinkowski
space.

We may also represent equations (3.12) and (3.15) in a purely geometrical form using
the deformed covariant derivatives and the homomorphism

DQ=dQ+oAQ—-QAw=0
DxQ=d*xQ+ 0w A*xQ —*xQ A w. (3.16)
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According to the transformation laws (0.13) and (3.7) and the transformation law for
*Q2 which, as follows from the homomorphism propertyofis the same as faR, we see
that equations (3.16) are gauge invariant. The correspondence between (3.12), (3.15) and
the system (3.16) follows from direct calculations.

Let us now try to define the deformed Lagrangian of the gauge field according to the
following formula:

L= QA*Q =+Q A Q. (3.17)

According to (1.18) and the fact that as well asxQ2 A Q are Hermitean differential forms,
the operatorL is also Hermitean. From (1.18) and the gauge transformation law (3.7) for
Q andxQ a similar formula forL follows,

L=ULU*. (3.18)

Now, in order to find a gauge invariant action fralm we have by analogy with the
undeformed case to take some integral oxdy. As in the case of defining the Hilbert
space corresponding tB, we have no recipe for how to do this, and we may only make
some general statements. We propose that a linear subgpasé,) of M, must exist
and a positive linear functional : L'(M,) — C. It is natural to suppose thdt*(M,) is
invariant under thé>,-coaction (1.3),

Pr(LY (M) = LHM,) ® P. (3.19)
It is also natural to suppose that the functioha P, invariant so that for every € L(M,)
(h® id) o A(a) = h(a)lp,. (3.20)

Now let U4, be the group of alU € M, satisfying (0.11) and/ 4, , the subgroup of
Uy, additionally preserving:, so that for every: € LY(M,) andU € Uy,

UaU* € LY(My) (3.21)
and
h(UaU*) = h(a). (3.22)

We see now that the invariance gauge group of equations (3.2) and (3.16),is
however, the action may be invariant only on the actioef, ;.

An additional spin-0 fieldd4 will be scalar if in the Dirac operator (2.9)* = A and
pseudoscalar if/* = Ay°. The natural appearance of such a field in a non-commutative
situation lies in accordance with the [1, 2] approach and seems very important.

4. Conclusions

In this paper we have defined the Dirac operatorceiinkowski space according to the
Connes scheme. In the special case it coincides with that proposed in [11]. We also
constructed the deformed Maxwell equations and deformed Lagrangian for electrodynamics
on «-Minkovski space, and mentioned the natural appearance of the spin-0 gauge field in
the theory. Since almost all of the main constructions used in this paper, including the
proof of commutativity of the diagram (0.8) (which follows from general formulae (1.22)
and (2.5)), the geometric form of the deformed Maxwell equation (3.16) and the expression
(3.17) for the deformed Lagrangian, have a very general form our approach probably can
be applied to many other interesting examples of quantum spaces. In a forthcoming paper
we shall study in this framework the field theory on &, (2) quantum group considered

as a quantum manifold.
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