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Abstract. Connections between theκ-Poincaŕe covariant space0 of differential 1-forms on
κ-Minkowski space, Dirac operator and Alain Connes formula are studied. The equations and
Lagrangian of gauge theory are constructed. The appearance of an additional spin-0 gauge field
according to the non-trivial structure of0 is studied.

0. Introduction

Recently, non-commutative geometry [1] has attracted a great deal of interest from many
researchers as a natural framework for quantization of space and time. One of the most
promising results in this direction is the approach to gauge field theory developed in [2]
where the standard model of gauge interaction was obtained from non-commutativity of
spacetime. A review of different deformations of Minkowski space which are connected
with the corresponding deformations of Lorentz and Poincaré groups is given in the review
[12].

The basic notion of the approach studied in [1, 2] is the Connes triple (A,H,D), where
A is in the general framework a non-commutative∗-algebra which is considered as an
algebra of operators in the Hilbert spaceH. D is a linear, possibly unbounded, operator in
H with D∗ = −D.

In the classical case whenA = Fun(M) is a commutative algebra of functions on the
differential manifoldM and the operatorD is the usual Dirac operator

D = γ i∂i . (0.1)

In (0.1) ∂i are local derivatives and for eachx ∈ M matricesγ i(x) satisfying relations

γ i(x)γ j (x)+ γ j (x)γ i(x) = 2gij (x) (0.2)

are generators of a local Clifford algebraCl(x). In equation (0.2)gij (x) are local
components of the metric tensor.

The vector bundle overM whose fibre over each pointx ∈ M is an algebraCl(x) is
called the Clifford bundle overM [4]. This bundle was associated in [1, 2] with the space
of all quantum differential forms overM; however, the space of all 1-forms is a subbundle
in Cl(M), whose fibre over each pointx ∈ M is generated as a linear space by elements
γ i(x). We shall call it the Dirac bundle and denote it by Dir(M,D).
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Non-commutative differential calculus on the Fun(M) is defined by introduction of the
exterior derivative operator which we shall denote by dc. For eachf ∈ Fun(M) it has the
form

dcf = [D, f ]. (0.3)

According to (0.1), formula (0.3) gives the following result:

dcf = ∂i(f )γ i . (0.4)

Correspondence of the definition (0.3) with the usual external derivative

df = ∂i(f ) dxi (0.5)

follows from the isomorphism betweenT ∗(M) and Dir(M,D) or in an algebraic framework
between their spaces of sections0 and Dir(Fun(M),D), where0 is the space of differential
1-forms overM or the space of sections of the cotangent bundleT ∗(M) and Dir(Fun(M),D)
is the space of sections of Dir(M,D). The isomorphism follows from the fact that all fibres
of T ∗(M) and Dir(M,D), as well as the corresponding gluing maps, are isomorphic. This
isomorphism may be expressed by the following commutative diagram:

Fun(M)
df=∂i (f ) dxi−→ 0

↓ id ↓ dxi → γ i

Fun(M)
dcf=[D,f ]−→ Dir(Fun(M),D)

(0.6)

As a bimodule over Fun(M), Dir(Fun(M),D) is generated by all sums of the form∑
i

fi [D, gi ]. (0.7)

According to the isomorphism (0.6) the gauge connection 1-formAi dxi , which is used
in construction of the pure gauge action, and the gauge interaction termAiγ

i in the Dirac
equation for the spinor field have similar geometrical interpretations. Therefore, when
studying the deformations of field theory in quantum spaces, it is natural to suppose that
the diagram (0.6) also has an analogue in the non-commutative case. We shall write the
corresponding diagram in the form,

A df=df−→ 0

↓ id ↓ df → dcf

A dcf=[D,f ]−→ Dir(A,D)
(0.8)

where Dir(A,D) is a bimodule overA generated by all sums of the form (0.7).
By its meaning the diagram (0.8) is much richer than the rather tautological diagram

(0.6) because in quantum cases elements of0 as well as elements of Dir(A,D) have non-
trivial commutation relations with elements ofA, so that the dependence of Dir(A,D) on
D becomes more essential.

When the Dirac operator is defined, formula (0.3) gives an explicit construction for
the external differential dc. However, for the most interesting class of non-commutative
spaces which appears in applications of quantum group theory [14], the non-commutative
differential calculus may be defined in the purely abstract form [3]. So in this case
the commutativity of the diagram (0.8) means an equivalence of the two approaches for
construction of the non-commutative differential calculus according to [1] or [3]. In the
paper we show that this commutativity may be used as a powerful tool for constructing the
corresponding Dirac operator.
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In the framework of [1, 2], the Dirac equation for a massless spinor field coupled with
the gauge potential has the form

(D + V )ψ = 0 (0.9)

whereψ ∈ H andV is a non-commutative analogue of igAiγ
i whereg is a gauge charge.

According to the isomorphism between the quantum Dirac and the quantum cotangent
bundles supposed by (0.8), it corresponds to the gauge connection quantum 1-formω,
which is the non-commutative analogue of igAidxi .

We take the gauge transformation law for spinorial fields in the form

ψ → Uψ (0.10)

whereU is a unitary element ofA
UU ∗ = U ∗U = 1. (0.11)

(An additional restriction onU will be discussed in section 3). The transformation (0.10)
for ψ is compatible with the following transformation forV

V → UVU∗ + U [D,U ∗] (0.12)

which, according to (0.8), is equivalent to the following law forω:

ω→ ω̃ = UωU∗ + U dU ∗. (0.13)

In the present paper we consider the Dirac operator for theκ-Minkowski spaceMκ as
one of the most studied deformations of the usual Minkowski space [5–8]. OnMκ may be
defined the right or left coaction of the quantum Poincaré groupPκ . The leftPκ -covariant
differential calculus onMκ was defined in [6]. The Dirac operator onMκ was proposed
in [11]. In this paper we (using left analogues of [6–8] constructions) define onMκ Dirac
operator which has a more general form than that defined in [11], but in some special case it
coincides with the latter. In contrast with the approach used in [11], we construct the Dirac
operator according to the condition of commutativity of the diagram (0.8). Our construction
has a general form and may be also used for different quantum spaces admitting the quantum
group coaction. A right (or left) covariant differential calculus on these spaces can be
constructed according to [3]. As will be mentioned in the conclusions, the commutativity
of diagram (0.8) follows from the general formulae of quantum differential calculus.

A description of different Minkowski space deformations has been given in the review
in [12]. (Examples of Dirac operators on the quantumSU(2) group and the quantum sphere
have been discussed in [9] and [13].)

The paper is organized as follows. In section 1 we study according to [6–8] the
differential geometry onMκ . According to [15], the algebra of differential operators on
Mκ is defined as the unified algebra consisting of both the elements ofMκ and its Hopf
dualM∗κ , with commutation relations between them induced by the left-invariant action of
M∗κ onMκ .

It is shown that on this algebra a rightPκ coaction may be defined. The corresponding
generators on which it has the simplest form are presented. The invariant Klein–Gordon
operator onMκ is constructed as a bilinear combination of these generators.

Construction of the exterior differential needs the introduction of quantum derivatives
which are also elements of the quantum Poincaré algebra. In section 2, according to
diagram (0.8), we construct anMκ Dirac operator. In section 3 we derive in various
forms the equations of deformed electrodynamics onMκ . We also define the deformed
Lagrangian. However, in the non-commutative case there is no such correspondence
between the Lagrangian and the equations of motion. Moreover, the gauge invariance
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group of these equations is much larger than the corresponding group for the Lagrangian.
We also mention that the existence of an additional dimension of the space of the quantum
differential 1-forms leads to the natural appearance of the extra spin-0 gauge field.

Everywhere in this paper we use the Einstein rules of summation. In the first section,
according to the notation used in [8], we suppose that the greek indicesα,µ, ν numerate
the spacetime components and take the values 0, 1, 2, 3; however, the latin indicesm and
n numerate only the space components and take values 1, 2, 3. Throughout,gµν means the
Minkowski space metric tensor (1,−1,−1,−1).

1. κ-Poincaré group and κ-Minkowski space

The κ-Poincaŕe quantum groupPκ was introduced in [7] (see also [6, 8]) and in one of the
equivalent forms it represents as a∗-Hopf algebra generated by Hermitian elements3 ν

µ ,
aµ and relations

[aµ, aν ] = i

κ
(δ
µ

0 a
ν − δν0aµ)

[3 ν
µ ,3

β
α ] = 0

[3 ν
µ , a

α] = i

κ
[(δν0 −3 ν

0 )3
α
µ + gνα(δ0

µ −3 0
µ )]

4(3 ν
µ ) = 3 α

µ ⊗3 ν
α

4(aµ) = aν ⊗3 µ
ν + 1⊗ aµ

S(3 ν
µ ) = 3ν

µ = gµαgν β3 α
β

S(aµ) = −aν3µ
ν

ε(3 ν
µ ) = δνµ

ε(aµ) = 0. (1.1)

The Pκ may be regarded as the quantum symmetry group of theκ-Minkowski space
Mκ , which is defined by four Hermitian generatorsxµ and the relations

[xµ, xν ] = i

κ
(δ
µ

0 x
ν − δν0xµ). (1.2)

The corresponding rightPκ coaction is

8R(x
µ) = xν ⊗3 µ

ν + 1⊗ aµ (1.3)

(the left comodule structure can also be defined [6, 7]).
The coproduct, counit, and antipode [8]

4(xµ) = 1⊗ xµ + xµ ⊗ 1

ε(xµ) = 0

S(xµ) = −xµ (1.4)

also define onMκ the structure of the cocommutative Hopf algebra. As was shown in [8],
the correspondenceaµ → xµ and3µ

ν → δµν defines a Hopf algebra homomorphism from
Pκ toMκ .

Its Hopf dualM∗κ is defined by four Hermitian generatorsPµ and the relations

[Pµ, Pν ] = 0

4(P0) = P0⊗ 1+ 1⊗ P0

4(Pm) = Pm ⊗ 1+ e−P0/κ ⊗ Pm
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S(P0) = −P0

S(Pm) = −eP0/κPm

ε(Pµ) = 0. (1.5)

The pairing(·, ·) :M∗κ ⊗Mκ → C is given by

i(Pµ, x
ν) = δνµ. (1.6)

As was shown in [8], the algebraM∗κ is a Hopf subalgebra of the quantum Poincaré
algebra which is dual toPκ . The corresponding pairing betweenM∗κ andPκ is given by
the formula

i(Pµ, a
ν) = δνµ. (1.7)

According to this pairing,M∗κ acts onMκ from the left

π(x) = ((id⊗ π),8R(x)) π ∈M∗κ , x ∈Mκ . (1.8)

Considering the elements ofMκ as the left multiplication operators we may obtain,
according to (1.5), the following relations:

[P0, x
µ] = 1

i
δ
µ

0

[Pm, x
0] = i

κ
Pm

[Pm, x
n] = 1

i
δnm. (1.9)

The elements

e4 = iκ

(
ch
P0

κ
− 1

2κ2
eP0/κP 2

)
e0 = iκ

(
sh
P0

κ
+ 1

2κ2
eP0/κP 2

)
em = −ieP0/κPm (1.10)

satisfy the following commutation relations with the elements ofMκ ,

[eµ, xν ] = i

κ
(g0µeν − gµνe0− gµνe4)

[e4, xµ] = − i

κ
eµ (1.11)

and the additional relation

�κ ≡ eµeµ = gµνeµeν = κ2+ (e4)2. (1.12)

Equations (1.11) and (1.12) are invariant under the rightPκ coaction which onMκ has
the form (1.3) and on the elements (1.10) is defined by

8R(eµ) = eν ⊗3ν
µ 8R(e

4) = e4⊗ 1. (1.13)

The proof of this statement can be easily obtained by comparing equations (1.11) and
(1.13) with analogous formulae (1.15) and (1.17) taken from [6] and given below. These
formulae correspond to the space of differential 1-forms but have the same form as (1.11)
and (1.13). The invariance of (1.12) under (1.13) may be proved easily by direct calculation.

We may also interpret formulae (1.13) together with (1.3) as a naturalPκ coaction on
the algebra of differential operators.
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So, according to the general approach [10, 15] we may consider the joint algebra
generated byxµ, eµ, e4 and relations (1.2), (1.11) and (1.12) as the algebra of differential
operators onMκ .

Element�κ from (1.12) is invariant under (1.13) and we may consider it as a massless
Klein–Gordon operator onMκ . (It can be expressed from the Klein–Gordon operatorC1

suggested in [11] by the relation�κ = C1(1+ (1/4κ2)C1).)
Following [6] we define the quantum De Rham complex onMκ (the Leibniz rule

is satisfied). As aMκ bimodule the space of 1-forms0 is generated byτµ = dxµ.
The commutation relations between the elements of0 andMκ may be written using an
additional 1-form [6]:

τ 4 = iκ

4
[τµ, xµ] − 3

4
τ 0. (1.14)

These relations have the form [6]

[τµ, xν ] = i

κ
(g0µτ ν − gµντ 0− gµντ 4) [τ 4, xµ] = − i

κ
τµ. (1.15)

The external algebra relations and the external derivative are given by (i, j = 0, . . . ,4)

τ i ∧ τ j = −τ j ∧ τ i dτ i = 0. (1.16)

Equations (1.14)–(1.16) are invariant under the rightPκ -coaction given on the elements
of Mκ by (1.3) and on the elements0 by

8R(τ
µ) = τ ν ⊗3 µ

ν 8R(τ
4) = τ 4⊗ 1. (1.17)

(In [6] the left variant of (1.17) was presented.)
It is easy to see from (1.15) that for everya ∈Mκ

s2a = as2 τ 5a = aτ 5 (1.18)

where the metric forms2 ∈ 0 ⊗ 0 and the volume formτ 5 ∈ 0∧5 are defined by

s2 = τµ ⊗ τµ − τ 4⊗ τ 4 τ 5 = τ 0 ∧ τ 1 ∧ τ 2 ∧ τ 3 ∧ τ 4. (1.19)

These forms are invariant under the rightPκ coaction on0 ⊗ 0 and0∧5.
According to (1.12) and (1.18), we suggest the following components of the metric

tensor

g44 = g44 = −1 (1.20)

corresponding to thee4 andτ 4.
The commutation relations between the 1-forms and elements ofMκ may also be

represented in the standard form [3] (i, j = 0, 1, 2, 3, 4)

τ ia = f i j (a)τ j (1.21)

wheref ik are linear operatorsf ik :Mκ →Mκ . From τ i(ab) = (τ ia)b it follows that

f ik(ab) = f i j (a)f jk(b). (1.22)

In the most interesting case when allf i j ∈M∗κ , so that their action on elements ofMκ is
given by (1.8), this is equivalent to

4(f i k) = f i j ⊗ f jk. (1.23)
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Taking

f 0
0 = ch

P0

κ
+ 1

2κ2
eP0/κP 2

f 0
m = −

1

κ
Pm f m0 = −

1

κ
eP0/κPm f nm = δnm

f 0
4 = sh

P0

κ
+ 1

2κ2
eP0/κP 2

f 4
0 = sh

P0

κ
− 1

2κ2
eP0/κP 2

f m4 = −
1

κ
eP0/κPm f 4

m =
1

κ
Pm

f 4
4 = ch

P0

κ
− 1

2κ2
eP0/κP 2 (1.24)

we can directly prove the commutation relations (1.15) and the coaction formulae (1.23).
From (1.15) and (1.17) it follows that the correspondence? : 0∧2 → 0∧3 defined by

the formulae

?τ 4 ∧ τ 0 = τ 1 ∧ τ 2 ∧ τ 3

?τ 4 ∧ τ 1 = τ 0 ∧ τ 2 ∧ τ 3

?τ 0 ∧ τ 1 = τ 4 ∧ τ 2 ∧ τ 3

?τ 1 ∧ τ 2 = −τ 4 ∧ τ 0 ∧ τ 3. (1.25)

and their cyclic permutations is a∗-homomorphism. It agrees with the rightPκ -comodule
andMκ bimodule structures on0∧2 and0∧3. We shall need this homomorphism in section 3
to construct the equations and Lagrangian of gauge theory.

From the definition ofτ 5 (1.19) and the commutation relations (1.15) it follows that for
everyα ∈ 0∧2

α ∧ ?α = ?α ∧ α. (1.26)

We shall use this property in the definition of the gauge invariant Lagrangian (3.17).

2. Dirac operator and differential calculus

Let us now define the following elements ofM∗κ :

∂0 = iκf 4
0 ∂m = iκf 4

m ∂4 = iκ(f 4
4− 1). (2.1)

Using these elements we may write the formula for the external derivation in the compact
form (i = 0, 1, 2, 3, 4)

da = ∂i(a)τ i . (2.2)

According to the Leibniz rule

d(ab) = a db + da b (2.3)

the following system of relations must be satisfied (i, j = 0, 1, 2, 3, 4):

∂i(ab) = a∂i(b)+ ∂j (a)f ji(b) (2.4)

or

[∂i, a] = ∂j (a)f ji . (2.5)
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Since all∂i ∈M∗κ this is equivalent to

4(∂i) = 1⊗ ∂i + ∂j ⊗ f ji . (2.6)

So to prove (2.2) we must check it for the coordinatesxµ and then prove (2.6), which can
be done easily by strict calculations.

We take the Dirac operator in the form (i = 0, . . . ,4)

Dκ = γ i∂i (2.7)

whereγ i , for i = 0, . . . ,3, are the usual Dirac gamma matrices satisfying the standard
relation

γ iγ j + γ jγ i = 2gij (2.8)

(which is a standard Minkowski space metric) andγ4 is some undefinite matrix which,
however, may be taken in the formγ4 = λI4 whereI4 is a unit 4× 4 matrix orγ4 = λγ5

whereγ5 = iγ0γ1γ2γ3. The choiceγ4 = 0 corresponds to the Dirac operator suggested in
[11].

In this case, the connection betweenDκ and�κ has the standard form

D2
κ = �κ . (2.9)

How to define the Hilbert spaceH correctly, where the operatorDκ acts, is a problem.
According to the general approach [1, 2] it should be of the formC4 ⊗Mreg

κ , where the
Hilbert spaceMreg

κ is a Hilbert completion of an appropriate subalgebra inMκ . This
statement follows from the commutative limitκ →∞ whereH = C4⊗ L2(M4).

The direct application of (0.3) gives, according to (2.5), the following expressions for
τ ic corresponding to theτ i elements ofDir(Mκ ,Dκ)

τ ic = γ jf i j . (2.10)

According to (1.22), relations (1.21) are also fulfilled forτ ic and the diagram (0.8) is
commutative. As we see this fact does not depend on the explicit form ofγ 4 (as well
as on the otherγ -matrices). Generally, it expresses the statement that on the definition
(2.7) derivatives∂i must be chosen in accordance with the commutativity diagram (0.8);
however, algebraical properties ofγ -matrices lead to connection between the Dirac and
Klein–Gordon operators. We shall discuss an additional role ofγ 4 in the next section.

3. Gauge theory onMκ

In this section we suppose that all up and down indices take values from 0 to 4.
By analogy with the classical case we define the gauge potentials as elements ofMκ , the

quantum algebra of functions. Let us introduce theU(1) gauge field by the anti-Hermitean
gauge connection 1-form

ω = iAkτ
k (3.1)

whereAk, k = 0, . . . ,3, are deformations of the usual potential andA4 may be interpreted
as a spin-0 gauge field. The appearance of such scalar gauge fields in the framework of
non-commutative geometry has been intensively studied in [1] and [2].

The condition thatω must be anti-Hermitean is equivalent to

f i j (A
∗
i ) = Aj . (3.2)

It seems important that equation (3.2) mixesAµ andA4.



Dirac operator, bicovariant differential calculus and gauge theory 6445

According to (0.9) and (2.7) and connection betweenω andV , we can write the gauge
coupled Dirac equation for a massless particle in the form

γ k 5k ψ = 0 (3.3)

where

5k = ∂k + igAjf
j

k (3.4)

(g is a gauge charge).
The transformation law (0.13) gives

Ãk = UAjf jk(U ∗)− i/gU∂k(U
∗). (3.5)

Defining the anti-Hermitean curvature form

� = dω + gω ∧ ω (3.6)

we obtain, according to (0.13), the following transformation law:

�̃ = U�U∗. (3.7)

Defining the field strength tensor by

iFjkτ
j ∧ τ k = � (3.8)

or according to (1.16)

Fij = ∂i(Aj )− ∂j (Ai)+ iAk[f
k
i(Aj )− f kj (Ai)] (3.9)

we can use relations (3.7), (1.21) and (1.22) to obtain the following transformation law:

F̃ij = UFklf kif l j (U ∗). (3.10)

We may also obtain the tensorFij by commuting covariant derivatives

[5i ,5j ] = igFmnf
m
if

n
j . (3.11)

It is easy to prove that the following Bianchi identities

[5i , [5j ,5k]] + [5k, [5i ,5j ]] + [5j , [5k,5i ]] = 0 (3.12)

are satisfied.
Defining the deformed covariant derivatives of the strength tensor as

5mFmk = ∂mFmk + ig(Ajf
j
m(F

mk)− Fmnf j
m f k

n (Aj )) (3.13)

it is easy to obtain the following transformation law:

5̃mFmk = U 5m Fmnf k
n (U ∗). (3.14)

In the limit κ → ∞, it follows from (1.24) (or generally from (1.21)) that we
havef mn → δmn so that the transformation laws (3.10) and (3.14) may be considered as
deformations of the standard formulae. Equations (3.12) and

5mFmk = 0 (3.15)

may be interpreted asPκ -covariant equations of deformed electrodynamics inκ-Minkowski
space.

We may also represent equations (3.12) and (3.15) in a purely geometrical form using
the deformed covariant derivatives and the homomorphism?:

D� = d�+ ω ∧�−� ∧ ω = 0

D ? � = d ? �+ ω ∧ ?�− ?� ∧ ω. (3.16)
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According to the transformation laws (0.13) and (3.7) and the transformation law for
?� which, as follows from the homomorphism property of?, is the same as for�, we see
that equations (3.16) are gauge invariant. The correspondence between (3.12), (3.15) and
the system (3.16) follows from direct calculations.

Let us now try to define the deformed Lagrangian of the gauge field according to the
following formula:

Lτ 5 = � ∧ ?� = ?� ∧�. (3.17)

According to (1.18) and the fact thatτ 5 as well as?�∧� are Hermitean differential forms,
the operatorL is also Hermitean. From (1.18) and the gauge transformation law (3.7) for
� and?� a similar formula forL follows,

L̃ = ULU ∗. (3.18)

Now, in order to find a gauge invariant action fromL, we have by analogy with the
undeformed case to take some integral overMκ . As in the case of defining the Hilbert
space corresponding toDκ we have no recipe for how to do this, and we may only make
some general statements. We propose that a linear subspaceL1(Mκ) of Mκ must exist
and a positive linear functionalh : L1(Mκ)→ C. It is natural to suppose thatL1(Mκ) is
invariant under thePκ -coaction (1.3),

8R(L
1(Mκ)) = L1(Mκ)⊗ Pκ . (3.19)

It is also natural to suppose that the functionalh isPκ invariant so that for everya ∈ L1(Mκ)

(h⊗ i d) ◦ 4(a) = h(a)1Pκ . (3.20)

Now letUMκ
be the group of allU ∈Mκ satisfying (0.11) andUMκ ,h the subgroup of

UMκ
additionally preservingh, so that for everya ∈ L1(Mκ) andU ∈ UMκ ,h

UaU ∗ ∈ L1(Mk) (3.21)

and

h(UaU ∗) = h(a). (3.22)

We see now that the invariance gauge group of equations (3.2) and (3.16) isUMκ
;

however, the action may be invariant only on the action ofUMκ ,h.
An additional spin-0 fieldA4 will be scalar if in the Dirac operator (2.7)γ 4 = λI and

pseudoscalar ifγ 4 = λγ 5. The natural appearance of such a field in a non-commutative
situation lies in accordance with the [1, 2] approach and seems very important.

4. Conclusions

In this paper we have defined the Dirac operator onκ-Minkowski space according to the
Connes scheme. In the special case it coincides with that proposed in [11]. We also
constructed the deformed Maxwell equations and deformed Lagrangian for electrodynamics
on κ-Minkovski space, and mentioned the natural appearance of the spin-0 gauge field in
the theory. Since almost all of the main constructions used in this paper, including the
proof of commutativity of the diagram (0.8) (which follows from general formulae (1.22)
and (2.5)), the geometric form of the deformed Maxwell equation (3.16) and the expression
(3.17) for the deformed Lagrangian, have a very general form our approach probably can
be applied to many other interesting examples of quantum spaces. In a forthcoming paper
we shall study in this framework the field theory on theSUq(2) quantum group considered
as a quantum manifold.
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